

JK Cement Works, Mangrol A unit of JK Cement Ltd. CIN: L17229UP1994PLC017199

- ♠ C/o. Kailash Nagar-312617, Nimbahera Distt., Chittorgarh (Raj.) INDIA
- ♦ +91-1477-220098, 220087

 jkc.mgrl@jkcement.com
- # www.jkcement.com

MGR/PC/ESR/21 \269

Date: 17.09.2021

To, **The Member Secretary**,

Rajasthan State Pollution Control Board,

4, Industrial Area, Jhalana Dungri

JAIPUR – 302004 (Raj)

Subject: Environmental Statement Report for the FY 2020-2021 of Power Plant (25 MW) of M/s J.K. Cement Works, Mangrol, Tehsil: Nimbahera, Dist: Chittorgarh (Rajasthan).

Ref.: F(Tech)/Chittorgarh(Nimbahera)/1(1)/2008-2009/1521-1523 & Order No 2017-2018/CPM/4862, Dated 30/05/2017.

Dear Sir.

Kindly refer to above subject matter, please find enclosed herewith Environment Statement Report of Power Plant (25MW) of M/s J.K. Cement Works, Mangrol for the FY 2020-2021 for your reference and record. We trust you will find the same in order.

Thanking you.

Yours Faithfully
For J.K. Cement Works, Mangrol

R. B. M. Tripathi
President(O) & Unit Head

Encl: as above.

Copy:

The Regional Officer, Rajasthan State Pollution Control Board, Near FCI Godown, Chanderiya, Distt. - CHITTORGARH (RAJ)-312021

Corporate Office

 Padam Tower, 19 DDA Community Centre Okhla, Phase - 1, New Delhi - 110020, India

+011-49220000

admin.padamtower@jkcement.com

e www.jkcement.com

Manufacturing Units at :

Nimbahera, Mangrol, Gotan (Rajasthan) | Muddapur (Karnataka) Jharli (Haryana) | Katni (M.P.) | Aligarh (U.P.) | Balasinor (Gujarat)

ENVIRONMENTAL STATEMENT FORM - V

Environmental Statement for the financial year 2020-2021, ending the 31st March 2021

PART-A

i. Name an address of the owner/occupier	25 MW Captive Power Plant		
of the industry operation or process	J. K. Cement Works, Mangrol C/o Kailash Nagar, Nimbahera Tehsil: Nimbahera, Chittorgarh (Rajasthan)		
	PIN- 312617		
ii. Industry category	Primary		
Primary - (STC Code), Secondary - (STC			
Code)			
iii. Production capacity	25 MW Power Generation		
iv. Year of establishment-	Year 2014		
v. Date of last environmental statement	15 th September 2020		
submitted			

PART-B

WATER AND RAW MATERIAL CONSUMPTION

i. WATER CONSUMPTION in m³/day

Process

. _

Nil

Cooling

: -

300 m³/day

Domestic

: -

5 m³/day

	Process water consumption per unit of products			
Name of products	During the previous financial year	During the current financial year		
	(2019-20) (KL/MWh)	(2020-21) (KL/MWh)		
1. POWER	0.40	0.45		

ii. RAW MATERIAL CONSUMPTION

Name of raw	Name of products	oroducts Consumption of raw material per unit of output					
material		During the	previous	During	the	current	
		financial year (2019-120)		financial	year	(2020-	
		(MT/MWh)		21)(MT/N	\Wh)		
Coal	Power (Electricity)	0.70)5	8	0.715		

PART-C POLLUTION DISCHARGE TO ENVIRONMENT / UNIT OF OUTPUT

Quantity of pollutants discharged (Ton/Day) Concentration of pollutants in discharge (mg/Nm3)		Percentage of variation from prescribed standards with reasons			
Effluent waste water gene	erated from blow down of co	oling tower and DM plant			
waste water treated in	neutralization pit as prescri	bed by Rajasthan State			
Pollution Control Board of	Pollution Control Board and treated water is being utilized in cement plant in				
cooling purpose, hence n	naintaining Zero Liquid Discha	rge unit.			
Stack Emission					
0.151	18.30	- 63.40 %			
1.357	175.25	- 70.79 %			
0.871	118.38	- 73.69 %			
	(Ton/Day) Effluent waste water generated waste water treated in Pollution Control Board of cooling purpose, hence in 0.151 1.357	discharged (Ton/Day) Effluent waste water generated from blow down of cowaste water treated in neutralization pit as prescripellution Control Board and treated water is being used cooling purpose, hence maintaining Zero Liquid Discharge (mg/Nm3) Stack Emission 0.151 18.30 1.357 175.25			

Ambient Air Quality (yearly average) in µg/m³

Location			Parameter	S	
,	PM10	PM2.5	SO2	NOx	CO (in mg/m³)
Near Time Office	52.3	38.0	19.9	23.4	678.0
Near Thermal Power Plant	57.5	40.8	21.6	24.0	738.6
Near Factory Gate	60.5	41.5	22.0	23.8	745.8
Near Colony Gate	52.6	37.4	21.2	23.8	705.4

STP treated water quality data

STP treated water Quality				
Parameters	Standards	Average results of YTD		
рН	Between 5.5 to 9.0	7.53		
Total Suspended solids	Not to exceed 100 mg/l	8.11		
Biological Oxygen Demand (3 days at 27 Degree C)	Not to exceed 30 mg/l	2.7		
Chemical Oxygen Demand	Not to exceed 250 mg/l	12.6		
Oil & Grease	Not to exceed 10 mg/l	2.03		
Ammonical Nitrogen (as N)	Not to exceed 50 mg/l	<1.0		
Sulphide (as S)	Not to exceed 2.0 mg/l	<0.10		
Total Residual Chlorine	Not to exceed 1.0 mg/l	<0.1		

<u>Treated water quality of Neutralization pit data</u>

Treated water quality of Neutralization pit					
Parameters	Standards	Average of YTD			
Total Suspended Solids	Not to exceed 100 mg/L	16.39			
Oil & Grease	Not to exceed 10 mg/L	1.58 *			
Biochemical Oxygen Demand (3 days at 27°C)	Not to exceed 30 mg/l	5.14			
Free available Chlorine	Not to exceed 0.5 mg/l	0.10			
PH	Between 6.5 to 8.5	7.47			
Temperature	Shall not exceed 5° C above the receiving water temperature	4 oC higher than the intake water temperature			
Copper (as Cu)	Not to exceed 1.0 mg/l	0.02			
Zinc (as Zn)	Not to exceed 1.0 mg/l	0.02			
Total Chromium (as Cr)	Not to exceed 0.2 mg/l	0.03			
Iron (as Fe)	Not to exceed 1.0 mg/l	0.14			
Chemical Oxygen Demand	Not to exceed 250 mg/l	21.13			
Phosphate (as P)	Not to exceed 5.0 mg/l	0.55			

Noise level monitoring data

	Noise Monitoring Report FY 2019-20							
Month	Near Time office Near The					Near Packing Plant Gate		
	Day	Night	Day	Night	Day	Night	Day	Night
Apr-20	64.5	52.4	68.2	56.7	70.2	59.8	62.8	52.8
May-20	63.9	56.3	69.4	57.9	72.1	58.4	64.3	52.6
Jun-20	65.8	54.7	70.1	58.3	69.6	56.8	66.7	55.4
Jul-20	64.9	56.2	67.5	56.1	68.8	57.7	68.5	53.8
Aug-20	66.4	56.7	69	57.2	69.7	57.9	67.4	56.1
Sep-20	69.3	57.4	67.8	54.6	70.2	58.2	65.9	54.7
Oct-20	66	53.9	68.1	58.3	70.1	58.3	70.5	60.8
Nov-20	67.2	54.2	67.3	56.9	71.3	57.9	71.3	60.1
Dec-20	65.6	53.9	68.9	57.6	69.9	56.8	68.9	58.3
Jan-21	68.2	54.2	69.3	56.3	67.5	57.5	65.2	52.8
Feb-21	67.9	52.4	69.2	56.4	68.4	58.6	68	56.2
Mar-21	66.9	52.9	68.8	56.2	70.2	59.3	67.8	55.4
YTD	66.38	54.6	68.63	56.87	69.83	58.10	67.27	55.75

PART-D

(As specified under Hazardous & Other Waste Management Rules-2016)

Hazardous waste	Total Quantity			
	During previous financial year (2019-20) (KL)	During current financial year (2020-21) (KL)		
(a) From process	Used oil (5.1)- 9.40 * Waste oil (5.2)- NIL	Used oil (5.1)-34.80 * Waste oil (5.2)- NIL		
(b) From pollution Control facilities	Not applicable	Not applicable		

^{*}including Cement Plant L-1,2, 3, CPP, WHRS, Mines & Colony. Hazardous waste generated are being sold through authorized recycler by CPCB.

PART-E SOLID WASTE

		Total Quantity		
		During previous financial year (2019-20) (MT/Year)	During current financial year (2020-21) (MT/Year)	
(a)	From process (Bed Ash)	6262.34	6150.34	
(b)	From pollution control facility (Fly Ash)	33357.41	40393.04	
(c)	Quantity reutilized with in the unit	99.38 %	97.67%	

Fly ash collected in pollution control equipment (ESP) is utilized for PPC grade cement manufacturing in own cement plant within the premises & bed ash generated from process in also utilized for cement manufacturing and coal dust collected from bag filters is recycled into the system.

PART-F

PLEASE SPECIFY THE CHARACTERISATIONS (IN TERMS OF COMPOSITION AND QUANTUM) OF HAZARDOUS AS WELL AS WASTES AND INDICATE DISPOSAL PRACTICE ADOPTED FOR BOTH THESE CATEGORIES OF WASTES.

- 1) Hazardous waste generated in the form of used / spent oil, waste / residue containing oil, which is stored in barrels at safe & dedicated area and sold to recycler approved by Central Pollution Control Board.
- 2) Fly ash collected in pollution control equipment (ESP) is utilized for PPC grade cement manufacturing in own cement plant within the premises & bed ash generated from process in also utilized for cement manufacturing and coal dust collected from bag filters is recycled into the system.

PART-G

IMPACT OF THE POLLUTION ABATEMENT MEASURES TAKEN ON CONSERVATION OF NATURAL RESOURCES AND ON THE COST OF PRODUCTION.

Industry has installed electrostatic precipitator (ESP) at boiler for stack and bag filters at transfer points to control the particulate matter and fugitive emission. The particulate matter collected from ESP in the form of fly ash is completely utilized in PPC cement production.

PART-H

ADDITIONAL MEASURES / INVESTMENT PROPOSALS FOR ENVIRONMENTAL PROTECTION INCLUDING ABATEMENT POLLUTION, PREVENTION OF POLLUTION.

Installed new technology NOx and SO2 analyzer to provide real time emission data and same is being transferred to RSPCB and CPCB web portal.

PART-I

ANY OTHER PARTICULARS FOR IMPROVING THE QUALITY OF ENVIRONMENT

- 1) Monitoring of stack emission and ambient air and water quality is being done regularly as mentioned in consent to operate.
- 2) 4 nos. of Continuous Ambient Air Quality Monitoring Systems (CAAQMS) has been installed at periphery of the plant.
- 3) Continuous Emission Monitoring Systems (CEMS) for PM, SO2 & NOx have been installed at the Boiler ESP stack and real time data transfer to RSPCB & CPCB.
- 4) Bag filters have been installed at various material transfer points to control fugitive emission.
- 5) Effluent generated from the cooling tower blow down and DM plant waste water is being treated through neutralization and used in cement plant for cooling purpose, hence maintaining Zero Liquid Discharge Unit (ZLD).
- 6) Air cooled condenser installed.
- 7) Fly ash generated from CPP, convey through pneumatic system and stored in silo, and utilized in own cement plant for PPC cement production.
- 8) Apart from this fly ash purchased from nearby thermal power plant and use for cement production.
- 9) Proper Housekeeping and cleaning is being done with the help of three road sweeping machines.
- 10) Domestic waste water generated is being treated in sewage treatment plant (STP). Treated water is utilized for plantation / horticulture development.
- 11) Cover shed Constructed to store the coal, to avoid fugitive emission.
- 12) 16 Rain water harvesting structures have been constructed in plant and colony area to recharge ground water.
- 13) Cemented road constructed to avoid fugitive dust generation during the movement of vehicle.
- 14) Telemetry system installed for online ground water level monitoring.
- 15) Total nos of tree in plant up to March-2021 is 143976 nos, including Cement Plant, WHRS& CPP.
- 16) More than 33 % area covered with green belt.
